Impacts of PHEV and PHEV+EV Charging on Electric Demand in Illinois in 2030

Prakash Thimmapuram

Computational Scientist

ARGONNE NATIONAL LABORATORY

Power System Representation

- 2,500 transmission lines
- 1,900 Buses
- 160 Thermal Units
- 63 Wind Farms
- 40 Solar Farms
- 870 Load Buses

System Simulation

- Electricity Market Complex Adaptive System (EMCAS) used to simulate the hourly operations of the power system.
- Simulated one week each in the months
 January, April, July and October representing
 the four seasons.
- External loads are included as price elastic loads to facilitate export of nuclear and wind generation during low load periods.

Load Forecast

- The non-vehicle electric load is updated based on the long-term projections of annual and peak load projections for ComEd and Ameren areas by PJM Interconnections and the MISO.
- Applied a load shaping algorithm to bus-level hourly loads from 2007 to scale to 2030 by matching area hourly, annual and peak load profiles.

Vehicle Load

- Penetration in 2030
 - 10% PHEV of light duty vehicles
 - 10% PHEV + 5% of light duty vehicles

Charging Scenarios

- Unconstrained
- Smart

Retirements

- Any coal or fuel oil or nuclear powered unit whose age will be 60 years or more by 2030
- Any natural gas powered unit whose age will be 40 years or more by 2030
- Capacity that will be retired by 2030
 4032 MW of bituminous and 5730 MW of sub-bituminous
 572 MW of fuel oil and 678 MW of natural gas
 No Nuclear units retired

Renewable Energy Portfolio Standards

- 25% of electric sales by 2026 should come from renewable resources of which at least 75% from wind and 6% from solar resources.
- 13,100 MW of Wind-turbines by 2030
- 1,620 MW of Solar capacity by 2030
- Solar and Wind Profiles
 - Based on PV Watts
 - Based on Eastern Wind Integration Study

Uprates and Capacity Expansion

- Assumed uprates that have been filed by Exelon and approved by NRC will be in implemented by 2030 (1,115 MW).
- 5,500 MW of thermal capacity is required to maintain a 15% reserve margin.
 - 12 combined cycle plants (400 MW each)
 - 3 gas turbines (230 MW each)
- Minimal changes to transmission lines.

Capacity Mix and Generation

Generation by Fuel Type

Time

Generation with Vehicle Loads

2030 Generation with PHEVs+EVs

Conclusions

- Charging upon arrival adds significant load in the late afternoon hours, which partially overlaps with the system load peak hours.
- Smart charging fills the overnight trough in the daily demand profile.
- The smart charging resulted in more dispatching of coal power plants compared to the arrival time charging (69% vs. 27% share of coal generation in the marginal mix for the smart charging and arrival time charging scenarios, respectively).

